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Eighteen commercial beers have been analyzed in both liquid and gas phases using colorimetric
sensor arrays made from selected chemically responsive dyes printed on a hydrophobic membrane.
Digital imaging of the dye array before and after exposure to the complex analytes in either the liquid
phase or the head-gas provides a color change profile as a unique fingerprint for the specific analyte.
The digital data libraries generated were analyzed using statistical and chemometric methods, including
principal component analysis (PCA) and hierarchical clustering analysis (HCA). In either liquid- or
gas-phase experiments, facile identification of specific beers was achieved using comparison of the
color change profiles; using HCA statistical analysis the error rate of identification was <3%.
Differentiation between even very similar beers proved to be straightforward. In addition, differentiation
of pristine beer from the effects of watering or decarbonation proved to be possible. These results
suggest that colorimetric sensor arrays may prove to be useful for quality assurance/quality control
applications of beers and perhaps other beverages.
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INTRODUCTION

Quality control of foods and beverages is obviously important
for both industrial and personal concerns. In the past decade, a
variety of sensor techniques have been developed (1-11) and
various applications realized for the analyses of foods and
beverages in both liquid and gas phases (12-24). Generally,
the so-called electronic tongue (4) and electronic nose (5)
devices consist of an array of cross-responsive sensors; these
are inspired by the mammalian gustatory and olfactory systems
(25-27), in which the composite responses of the array
differentiate analytes from one another. Instead of the traditional
component-by-component analyses via the combination of
various chromatographic and spectroscopic techniques (28),
electronic tongue and nose approaches are potentially less
expensive. Most array detectors are based on conductive
polymers or electrochemical sensors; a common limitation of
such arrays, however, is their general lack ofchemical dis-
crimination, which makes differentiation among similar species
problematic.

Recognizing that human beings are visual creatures and,
consequently, that imaging technology is highly advanced yet
extremely inexpensive, we have developed an optoelectronic
approach. Over the past few years, we have developed a
colorimetric sensor array for the general detection, identification,
and quantification of volatile organic compounds in the gas
phase (29-31). The colorimetric sensor arrays are inexpensive

disposables; therefore, their reversibility is not an important
issue. In fact, we have argued elsewhere (31) that a requirement
of robust, nondisposable sensors has substantial disadvantages
for the development of sensor technology, especially for
electronic nose/tongue applications.

Because the sensor dyes and substrates are both hydrophobic,
we have even been able to use such arrays directly immersed
for aqueous solutions containing organic compounds without
interference from the presence of 55 M water (32). The color
change pattern of the dye array before and after exposure to an
analyte provides a color “fingerprint” for each specific analyte
(Figure 1), and this simple array system makes facile identifica-
tion of a wide variety of aqueous organic solutions possible
over a concentration range from 0.1 to 10-5 M. Complex
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Figure 1. Images of the gas-phase colorimetric sensor array before and
after exposure to head-gas from Goose Island Pils. Dyes that changed
color the most are circled. The colorimetric sensor array for gas-phase
analysis (as shown) has 36 dyes, whereas for liquid-phase analysis the
array contains 25 dyes. For the purposes of effective visualization, the
color range shown in the color change map representation is expanded
from RGB values of 4−35 (i.e., 5 bit) to 0−255 (i.e., 8 bit).
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mixtures present no inherent difficulty for the colorimetric sensor
array: obviously, the composite response of the sensor array
does not give a component-by-component analysis, but for
purposes of identification or quality control such an analysis is
unneeded. Moreover, owing to its high selectivity and low cost,
the colorimetric sensor array may prove to be suitable for
industrial applications in the analyses of foods and beverages;
for example, 14 different commercial soft drinks have been
analyzed and easily differentiated by the dye array (32).

As an obviously important beverage, beer has been intensively
examined by numerous scientists, and some have even published
on the subject (19; 22-24). In the work presented here, two
colorimetric sensor array systems, optimized for sensing in liquid
and gas phases, respectively, were used to analyze 18 com-
mercial beers. The main focus of this paper is to show the ability
to identify one beer from another and to show classification of
beer type based on the colorimetric response of the sensor arrays.
This effort develops a simple method that may prove to be useful
for the quality control of beers, as well as a test of the general
applicability of our sensor arrays.

MATERIALS AND METHODS

Sample Preparation and Instruments. Eighteen beers were
purchased from local stores and were used directly and freshly from
their containers. Loss of CO2 is minimized by conducting parallel
quadruplicate experiments immediately after opening of the containers.
NaH2PO4‚H2O and Na2HPO4 were dissolved in purified water (obtained
using NANOpure Ultrapure Water System, Barnstead International,
Dubuque, IA) to make 500 mL of a 0.3 M phosphate buffer solution
at pH 7.0 [the same buffer as used in prior aqueous sensing (32); as
long as the same reference solution is used for all samples, its specific
content (e.g., salt solution, pH) will not affect the results]. A
ThermoOrion 920A-plus pH-meter was used for pH measurements.
Three carbonated solutions of ethanol were prepared at 4, 5, and 6%
ethanol concentrations by dissolving pure ethanol (AAPER Alcohol
and Chemical Co., Shelbyville, KY) in carbonated water (Vess Seltzer
Water); as listed for each beer inTable 1, these concentrations were
chosen because commercial beers normally have similar alcohol
contents. For comparison, a fourth, noncarbonated, solution was
prepared with 5% ethanol in phosphate buffer. The carbonated ethanol
solutions were tested immediately after preparation.

Sensor Array. The composition and preparation of the colorimetric
sensor arrays were described previously (29-32). The arrays used in

these studies were produced by transfer from an ink-well array to the
hydrophobic membrane using an array of dipped stainless steel pins.
Printed arrays are available commercially (liquid-sensing array is a 25-
dye array, CSI.083; the gas-sensing array is a 36-dye array, CSI.031)
from ChemSensing, Inc. (Champaign, IL; www.chemsensing.com).

Data Acquisition. Data acquisition was carried out using ordinary
flatbed scanners following previously reported procedures (29-32).
All experiments were done in quadruplicate.

For all aqueous-phase experiments, an Epson Perfection 1250 flatbed
scanner was used. The array was first saturated in an aqueous liquid
without dissolved organics (i.e., phosphate buffer) and imaged. After
exposure to an analyte solution, rapid color changes in the dyes were
readily observed and digitally imaged. The colors of the analyte
solutions have no significant effects because the liquid layer between
the sensor array and flatbed scanner is extremely thin (<100µm). With
the use of a well-designed flow cell, the analyte solution required could
be made less than 100µL.

For all gas-phase experiments, an Epson Perfection 1670 flatbed
scanner was used for imaging. The array was first imaged in air
immediately before the addition of the beer sample. Five hundred
microliters of beer was then applied to a piece of filter paper secured
in a custom-made Teflon array holder with a sensor array inside; the
holder was then sealed. The color change of the dye array was imaged
after full equilibration with the headgas.

Data Processing.Simply subtracting the before-exposure image from
the after-exposure image (red value minus red value, green minus green,
blue minus blue) provides a color change profile for each analyte
solution, as shown inFigure 1. The center of each dye spot (∼300
pixels, 10 pixel radius) is averaged to avoid edge artifacts using
Photoshop or customized software, ChemEye (ChemSensing, Inc.). The
color change profiles are simply 3N-dimensional vectors (whereN )
number of dyes) that can be easily analyzed by using standard statistical
and chemometric techniques. In addition to the quadruplicate data, an
average response was also calculated for each analyte. The full set of
digital data is available in the Supporting Information.

It is convenient to visually display these vectors as color change
maps by representing each spot as the absolute value of its color change
in RGB. For purposes of display, the color ranges of the images are
expanded; for liquid analysis (Figure 2), RGB values of 10-41 (i.e.,
5 bits) were expanded to 0-255 (i.e., 8 bits), and for gas analysis
(Figure 3), from 4-35 to 0-255. This visual representation in no way
affects the actual digital data used for chemometric analysis. The color
change profiles obtained from liquid-phase and head-gas analyses were
compiled into two libraries, both with 94 entries (5 for each of 18 beers
plus 4 ethanol control samples), consisting of 75-dimensional vectors
for liquid-phase analysis (25 red, green, and blue color changes of the

Table 1. Categorization of the 18 Beers Tested

a Information obtained from http://beeradvocate.com/beer/style/. b Information obtained from Leinenkugel’s official website (http://www.leinie.com).
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25 dyes in the aqueous-phase sensor array) and a 108-dimensional
vector for gas-phase analysis (36 RGB color changes of the 36 dyes in
the gas-phase sensor array), respectively. Both of the digital libraries
are provided as Supporting Information.

Chemometric Analyses.Principal component analysis (PCA) and
hierarchical clustering analysis (HCA) (33) were performed on the

libraries using Multi-Variance Statistical Package (MVSP, Kovach
Computing Services, Anglesey, Wales; www.kovcomp.co.uk) software.

RESULTS AND DISCUSSION

Molecular recognition of an analyte is, of course, a function
of the intermolecular interactions of that analyte. Our colori-
metric approach (29-31, 34) to molecular recognition uses a
cross-responsive array of chemically diverse dyes; the choice
of the dyes in our colorimetric sensor array makes use of a wide
range of intermolecular interactions, rather than simply physical
adsorption [which is the dominant interaction in most prior
electronic nose technology (5), e.g., adsorption into polymers
(35) or onto metal oxide (36) surfaces]. The chemically
responsive dyes fall into three classes: (1) metal ion containing
dyes that change color in response to Lewis basicity (i.e.,
electron pair donation and metal ion ligation), (2) pH indi-
cators (37) that change color in response to Brønsted acidity/
basicity (i.e., proton acidity and hydrogen bonding), and (3)
dyes with large permanent dipoles [e.g., zwitterionic solvato-
chromic dyes (38)] that change color in response to local
polarity. To some extent, of course, all dyes have some attributes
of each of these three classes. To analyze aqueous solutions or
head-gases with high humidity, it is important that the dyes
chosen must be hydrophobic and must be printed on a
hydrophobic membrane.

Beer can be generally classified as either lager or ale. The
classification depends on the type of yeast used in the brew
and the temperature at which fermentation takes place. Ales
use yeast that ferment at the “top” of the fermentation vessel,
which allows a higher temperature (15-25 °C) with a quicker
fermentation period (∼8 days or less). Lagers are brewed with
bottom-fermenting yeast that ferment more slowly and at colder
temperatures (12-18 °C), and they are often further matured
at cool temperatures. Ale yeasts produce more byproducts (e.g.,
esters) than lager yeasts; thus, ales are generally more complex
than lagers. Ales are also generally higher in alcohol content.
There are also specialty beers, which often employ techniques,
ingredients, and traditions from both lagers and ales but focus
more on vegetable or fruit flavorings. In addition to the general
division of lagers from ales, there are, of course, many more
subtle subclasses of beers based on ingredients, style of handling,
country of origin, etc. In these studies, 18 commercial beers
were examined with the colorimetric sensor arrays for both
liquid-phase and head-gas analyses: 11 lagers, 6 ales, and 1
specialty; detailed categorization of the beers used in this study
is shown inTable 1. Four ethanol solutions were also analyzed
as control samples for comparison.

Colorimetric Sensor Array Responses.Color change pro-
files were obtained from liquid-phase experiments for the 18
commercial beers, as shown inFigure 2. Distinct and highly
reproducible patterns were obtained for each beer. Four ethanol
solutions at different ethanol concentrations with and without
added CO2 gas were examined as controls: 4, 5, and 6% v/v
ethanol solution in soda water and 5% v/v ethanol solution in
pH 7 phosphate buffer. Upon examinatinon ofFigure 2, it is
obvious that the strong array responses to the beers donotcome
primarily from ethanol, water, or dissolved CO2, because the
ethanol control solutions gave much weaker responses than
almost all of the beer samples. Moreover, changing the ethanol
concentration from 4 to 5 to 6% v/v induces only a slight change
in color change patterns, whereas far more dramatic color
changes were observed among the beers due to the changes in
concentrations of other chemicals to which the arrays are more
sensitive. This is in part due to the hydrophobic nature of the

Figure 2. Average color change profiles of 18 commercial beers and 4
control ethanol solutions for liquid-phase analysis done in quadruplicate.
The names are coded with different colors: red, American and Czech
lagers; gray, German lagers; green, ales; magenta, specialty; black,
controls. For the purposes of effective visualization, the color range shown
in these representations is expanded from RGB values of 10−41 (i.e., 5
bit) to 0−255 (i.e., 8 bit); the complete digital data are provided as
Supporting Information.

Figure 3. Average color change profiles of 18 commercial beers and 4
control ethanol solutions for gas-phase analysis. The names are coded
with different colors: red, American and Czech lagers; gray, German
lagers; green, ales; magenta, specialty; black, control. For the purposes
of effective visualization, the color range shown in these representations
is expanded from RGB values of 4−35 (i.e., 5 bit) to 0−255 (i.e., 8 bit);
the complete digital data are provided as Supporting Information.
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array, which makes the array nonresponsive to water and less
responsive to other highly polar solutes (e.g., methanol and
ethanol).

Similar to the liquid-phase analyses, average color change
profiles were obtained from head-gas analysis experiments for
the same 18 commercial beers, as shown inFigure 3. Distinct
and highly reproducible patterns were again obtained for each
analyte, although the color changes were weaker than those in
liquid-phase analysis. Compared with the four ethanol control
solutions, it is also obvious that the strong responses from the
complex mixtures present in other beers didnotprimarily come
from ethanol, humidity, or CO2, because the ethanol control
solutions gave much weaker responses than almost all of the
beers.

Principal Component Analysis. PCA is a mathematical
transformation used to extract variance between entries in a data
matrix by reducing the redundancy in the dimensionality of the
data. It takes the data points (changes in RGB values for each
of the dyes in the array) for all analytes and generates a set of
orthogonal eigenvectors (principal components, PCs) for maxi-
mum variance. The maximum total number of PCs is equal to
3N - 1, whereN is the number of dyes in the array (i.e., 75
dimensions for the aqueous-phase sensor array and 108 for the
gas-phase sensor array). PCA essentially concentrates the data’s
variation among analytes into the minimum number of dimen-
sions. Generally speaking, the larger the number of PCs
necessary for a certain level of discrimination (e.g., 95% of the
total data variability), the better the sensor will be able to
discriminate among similar analytes.

As shown in Supporting Information Figure 1 for the liquid-
phase data, PCA shows that 22 dimensions are required to
capture 95% of all the discriminatory information and that 37
dimensions are required for 99% discrimination. For the head-
gas data PCA (Supporting Information Figure 1), 32 dimensions
are required to capture 95% of all the discriminatory information
and 51 dimensions are required for 99% discrimination. The
number of PCs is even larger than that for liquid-phase analysis,
in part because the gas-phase sensor array contains 36 dyes
rather than 25. In general, other electronic nose and electronic
tongue techniques typically have95-99% of discrimination in
their first two dimensions.

The ability to discriminate between similar beers with the
colorimetric sensor arrays comes from the chemical diversity
of the 25 or 36 sensor dyes (and the resulting diversity of
chemical interactions with those dyes). The high dimensionality
(i.e., high dispersion) of the colorimetric sensor array gives us
an unusually high level of chemical discrimination, and hence
colorimetric sensor arrays have an exceptional ability to
differentiate among very similar analytes.

The choice of dyes and the analytes being probed are not the
same in the head-gas data compared to the liquid-phase data.
This makes it potentially advantageous to combine the two
digital databases. The liquid-phase and head-gas analyses data
were therefore combined to form a library of 183-dimensional
(i.e., 75+ 108) vectors, and statistical analyses were performed
on the combined digital database. The quadruplicate data for
liquid and gas phases for each analyte were joined randomly,
and the averages of each analyte in the liquid and gas phases
were merged.

PCA of the combined data (Supporting Information Figure
1) shows that 38 dimensions are required to capture 95% of all
the discriminatory information and 59 dimensions are required
for 99% discrimination, which is a higher dimensionality than
for either liquid-phase or head-gas analyses alone. As shown

in Table 2, it is also interesting to compare the number of PCs
needed to include 95% of the total discrimination to the total
dimensionality of the databases. The fraction of all dimensions
needed for 95% discrimination is 0.29 for the liquid-phase
database, 0.30 for the head-gas database, but only 0.21 for the
combined database. One may conclude, therefore, that com-
bining the liquid-phase and head-gas databases does improve
the dimensionality of the data, but not to the extent it would if
the two databases were fully independent of each other (i.e., if
the PCs of the two databases were orthogonal to one another).

In most chemometric analyses, it is routine to plot the data
in the two (or occasionally three) most important PCA dimen-
sions, a so-called “PCA score plot”. The score plot is then used
to show differentiation between different analytes. Such a score
plot will work, however,if and only ifa very large percentage
of the total discrimination can be concentrated to only two (or
three) dimensions: a traditional PCA score plotdoes not and
should not represent the data wellif the sensors have good
chemical discrimination (i.e., high dimensionality). In our case,
the two most important PCs contain only∼34% of the total
discrimination. The extremely high dimensionality of all of these
databases iswithout precedentin prior electronic nose technol-
ogy: prior techniques nearly always are able to incorporate 95%
of discrimination in two or three dimensions. For any sensor
array with high dimensionality, a two-dimensional (or even
three-dimensional) PCA score plot is no longer appropriate for
complete and accurate representation of the data. This makes
any visual representation of PCA of a high dimensionality
database extremely difficult.

Hierarchical Clustering Analysis. A very standard statistical
procedure, HCA provides a better alternative for visual repre-
sentation of high-dimensional data, in that an HCA dendrogram
incorporates the full dimensionality of the database. HCA groups
the analyte vectors according to their intervector spatial distances
in their full dimensional vector space (e.g., 75-dimensional for
the aqueous-phase 25-dye sensor array and 108 for the gas-
phase 36-dye sensor array). There exist various related methods
for defining clusters from the set of analyte vectors. The most
common of these is the minimum variance method (Ward’s
method) (27), which we use here. The sum of the squared
Euclidean distances (SEDs) from the group centroid to each of
the vectors in that group is used to evaluate the variance within
the group, and the groups with the minimum variance are
clustered preferentially. Those clusters are then grouped together
to form new larger scale clusters. The operation is performed
repeatedly until only one supercluster remains. A dendrogram
is generated in this fashion that shows quantitatively the
similarities among the various analytes. An HCA dendrogram
shows quantitatively the degree of similarity of the array
responses among the various analytes using the data’s full
dimensionality. It also shows any misidentifications or overlap
between individual measurements of analytes. In addition, once

Table 2. Principal Component Analysis of the Colorimetric Sensor
Array Databases

database

maximum
dimensionality
of databasea

PCs for 95%
of discrimination

PCs for 99%
of discrimination

liquid phase 75 22 (0.29)b 37 (0.49)b

head-gas 108 32 (0.30) 51 (0.47)
combined 183 38 (0.21) 59 (0.32)

a Maximum dimensionality of the database is the total number of measured
variables (i.e., changes in red, green, and blue values of each dye in the array or
combination of arrays). b Fraction of total.
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a database is established, any new unknown sample can be easily
classified using the HCA dendrogram to identify the unknown
or at least identify its closest database relation.

The HCA dendrogram for 94 color change patterns (quadru-
plicate trials plus averages of 18 beers plus four ethanol
solutions) is shown inFigure 4 for the combined database and

in Supporting Information Figure 2 for a comparison of all three
databases. As shown in the HCA dendrogram (Figure 4),
excellent classification is seen for the combined data: of 94
cases, there are only 3 misclassifications (2.7% error rate).
Furthermore, the classes of beers are generally distinct and
coincide well with the commonly accepted classification of beers
that are shown inTable 1: for example, (1) there is an excellent
division between pale lagers and ales; (2) all six American macro
lagers cluster closely, but are fully distinct from each other;
and (3) specialty beers and ethanol controls are very well
separated from the rest. These results suggest that the HCA
analysis (i.e., dendrogram) may be used to estimate the
classification of unknown beers.

In comparing the HCA analyses of the combined, the liquid-
phase, and the head-gas databases (Figure 4 and Supporting
Information Figures 2 and 3), we observe that the combined
database provides the best classification and the lowest error
rate (3 of 110 cases; 2.7% error rate). Liquid-phase analysis
does a somewhat better job of classification (e.g., 9 of 110;
8.2% error rate) than the head-gas (14 of 110; 13% error rate),
but neither the liquid nor the gas analyses alone are as good as
the combined database.

Supporting Information Figure 2 shows a comparison of the
dendrogram groupings found for all three databases. Again, the
dendrogram classifications are most discrete for the combined
database and the head-gas analysis, the least accurate. This is
certainly consistent with the general impression that taste rather
than aroma is the dominant characteristic of beers. It is also
worth noting that the clusters formed from the liquid-phase
database are not exactly the same as those from the head-gas
analysis, which shows that there are differences between the
weightings of the chemical classes to which the liquid-sensing
arrays are responding versus the weightings of the gas-sensing
arrays.

One of the major remaining sources of errors with the
colorimetric sensor arrays is in the reproducibility of the printing
of the arrays, which (in these studies) were produced by transfer
from an ink-well array to the hydrophobic membrane using an
array of dipped stainless steel pins (23-26). The level of
reproducibility in array printing in general, however, is improv-
ing rapidly using noncontact printing (e.g., cf. Perkin-Elmer
PiezoArray).

Validation. Testing the reproducibility and reliability of a
multidimensional sensor array is much more complicated than
for single sensors. Although statistical methods, notably HCA,
provide an optimized model of the entire database, it would be
reassuring to have a simpler model to test the consistency of
the data. The most intuitive and straightforward method is
simply to query each trial against the whole data library and to
find the closest match, as defined by a Euclidean distance.

To that end, we can define a simple goodness of fit (GOF)
to evaluate the similarity between any two vectors, by calculat-
ing the Euclidean distance between the two vectors. As seen in
eq 1, the GOF is a normalized Euclidean distance, wherea is

the measurement,b is any library entry,xi is the∆R, ∆G, or
∆B value of theith dye,N is the number of dyes, and 3N is the
total dimensionality of the vector space (e.g., 108 dimensions
for a 36-dye array). The normalization factor, (3N × 510)2,
comes from the maximum difference possible between any two
RGB values in the before-exposure versus after-exposure

Figure 4. HCA dendrogram of 18 different beers and 4 ethanol control
solutions obtained from the color change profile database for the combined
liquid- and gas-phase analyses, using Ward’s method. All experiments
were run in quadruplicates, and an average was generated thereof. After
the beverage name, the trial number or for average (ave) is given.

GOF) 1 - x∑
i)1

i)3N

(xai - xbi)2/(3N × 510)2 (1)
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images: that is, 255- (-255). Therefore, the GOF value is a
number between 0 and 1; a GOF of 1 indicates an exact match.

By calculating a GOF for every quadruplicate trial and
average trial (90 entries for the beers only; the controls were
not included because they were single entries only; results
presented as Table 2 in the Supporting Information) against
every entry in the digital data library, we find that the best match
for each entry (other than itself) is one of the other entries for
that analyte, with five mismatches (i.e., 5.5% error rate). This
compares well with the HCA dendrogram misclassification rate
of 2.7%: HCA optimizes classifications for the whole database,
and so, as expected, its error rate is somewhat less than the
more limited pairwise GOF comparison.

Potential Applications to Quality Control/Quality Assur-
ance.Due to the extremely high discriminatory ability of the
colorimetric sensor array, one may speculate the array might
prove to be useful in applications of quality control and quality
assurance for the food and beverage industry. We have
conducted two simple experiments along these lines as a proof
of concept: we have examined the effects of degassing (i.e.,
flatness due to loss of carbonation) and of dilution (i.e.,
watering) on the colorimetric sensor array response. For the first
experiment, the array response (done in triplicate) was deter-
mined for a single beer after intentional degassing of beer with
an argon gas flow. As shown inFigure 5, the color change
profiles of the array do respond to such degassing, and the
changes in the array response are clearly distinguishable even
by eye. For the second experiment, the effect of watering of a
beer on its array response was determined. As shown inFigure
6, the color change profiles do change with increased dilution,
and the changes are again clearly distinguishable by eye.Figure
6 also shows the dendrogram from the triplicate trials plus the
average: the data are quantitative, and no confusion was
observed among the 16 entries. These two simple examples give
us some hope that our approach using colorimetric sensor arrays
may prove to be useful for quality assurance/quality control
applications of beers and perhaps other beverages.

In summary, a new and very simple analytic method using
colorimetric sensor arrays has been successfully applied in the
comparison and identification of 18 commercial beers in both
liquid and gas phases. The color changes of the sensor arrays
produce distinct identifiable patterns for each beer using an
ordinary flatbed scanner. The data can be analyzed using the
standard chemometric method of hierarchical cluster analysis,
and excellent discrimination can be obtained. By combining the
numerical data from both the liquid-phase and head-gas experi-
ments, great improvements in discrimination and selectivity can
be achieved; identification error rates are below 3%. In the
future, new colorimetric sensory dyes (e.g., dyes selective for
detection of ions or carbohydrates) can be added to expand the
capability of the current array.

We have established in these studies that we can tell the
difference even between very subtly different beers with

reasonable accuracy. We speculate that the colorimetric sensor
array will also be able to distinguish readily between a beer in
its pristine state and one that has undergone spoilage, has been
foxed by overheating or photo-oxidation, has been watered or
contaminated, or has loss carbonation. Our preliminary explora-
tion of the last two examples suggests application of the
colorimetric sensor array to quality control and quality assurance
in the food and beverage industry. In addition, the extremely
high dimensionality of the data from our colorimetric arrays
suggests that statistical correlations with the evaluations by
organoleptic panels (i.e., drinkers) may be accomplished and
may prove to have quantitative predictive value. It is important
to realize, however, that the colorimetric sensor array is based
on the differences in the concentrations of various organic and
inorganic components (including pH) of the analytes, and the
array responses cannot be translated (at this time, at least) into
an actual human perception of taste and smell.

Supporting Information Available: Scree plots of the PCAs,
HCA of liquid-phase, head-gas, and combined databases,
pairwise goodness-of-fit comparisons, and the full digital
database for liquid-phase, head-gas, and combined analyses. This
material is available free of charge via the Internet at http://
pubs.acs.org.
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