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Colorimetric Sensor Arrays for the Analysis of Beers: A
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Eighteen commercial beers have been analyzed in both liquid and gas phases using colorimetric
sensor arrays made from selected chemically responsive dyes printed on a hydrophobic membrane.
Digital imaging of the dye array before and after exposure to the complex analytes in either the liquid
phase or the head-gas provides a color change profile as a unique fingerprint for the specific analyte.
The digital data libraries generated were analyzed using statistical and chemometric methods, including
principal component analysis (PCA) and hierarchical clustering analysis (HCA). In either liquid- or
gas-phase experiments, facile identification of specific beers was achieved using comparison of the
color change profiles; using HCA statistical analysis the error rate of identification was <3%.
Differentiation between even very similar beers proved to be straightforward. In addition, differentiation
of pristine beer from the effects of watering or decarbonation proved to be possible. These results
suggest that colorimetric sensor arrays may prove to be useful for quality assurance/quality control
applications of beers and perhaps other beverages.
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INTRODUCTION

o0 : L)
Quality control of foods and beverages is obviously important | ® e ® e
for both industrial and personal concerns. In the past decade, a | ® @ Ol||* 0O O
variety of sensor techniques have been develofed () and 0+*00-~ 0+*00-¢ &
various applications realized for the analyses of foods and | QQQ© e Q00 o0
beverages in both liquid and gas phask2—24). Generally, o .
the so-called electronic tongué)(and electronic nose5) Before After Difference Map

devices consist of an array of cross-responsive sensors; thes
are inspired by the mammalian gustatory and olfactory systems
(25—27), in which the composite responses of the array
differentiate analytes from one another. Instead of the traditional
component-by-component analyses via the combination of
various .chromatographlc and spectroscopic technquG)s ( color range shown in the color change map representation is expanded
electronic tongue and nose approaches are potentially lessfrom RGB values of 4-35 (i.e., 5 bit) to 0~255 (i.c., 8 bit)
expensive. Most array detectors are based on conductive ’ o '
polymers or electrochemical sensors; a common limitation of gisposables; therefore, their reversibility is not an important
such arrays, however, is their general lackcbemical dis-  jssye. In fact, we have argued elsewh&8 that a requirement
crimination, which makes differentiation among similar species o ropyst, nondisposable sensors has substantial disadvantages
problematic. for the development of sensor technology, especially for
Recognizing that human beings are visual creatures and,electronic nose/tongue applications.
consequently, that imaging technology is highly advanced yet Because the sensor dyes and substrates are both hydrophobic,
extremely inexpensive, we have developed an optoelectronicwe have even been able to use such arrays directly immersed
approach. Over the past few years, we have developed afor aqueous solutions containing organic compounds without
colorimetric sensor array for the general detection, identification, interference from the presence of 55 M wat@®)( The color
and quantification of volatile organic compounds in the gas change pattern of the dye array before and after exposure to an
phase 29—31). The colorimetric sensor arrays are inexpensive analyte provides a color “fingerprint” for each specific analyte
(Figure 1), and this simple array system makes facile identifica-

* Author to whom correspondence should be addressed [telephone (217)tion of @ wide variety of aqueous organic solutions possible
333-2794; fax (217) 333-2685; e-mail ksuslick@uiuc.edu]. over a concentration range from 0.1 to~20M. Complex

'lafigure 1. Images of the gas-phase colorimetric sensor array before and
after exposure to head-gas from Goose Island Pils. Dyes that changed
color the most are circled. The colorimetric sensor array for gas-phase
analysis (as shown) has 36 dyes, whereas for liquid-phase analysis the
array contains 25 dyes. For the purposes of effective visualization, the
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Table 1. Categorization of the 18 Beers Tested

Name Alcogzlv?‘lt;rtent Specific Subcategory Category 2
Pilsner Urquell® 4.40 Czech Pilsener Czech Lager

Miller® Lite 4.17 Light Lager

Miller® Genuine Draft 4.66

Point Special Lager 4.6

Miller® High Life™ 5.00 Macro Lager American Lager

Icehouse™ 5.50 Lager
Leinenkugel's® Original Lager 4,60

Leinenkugel's® Red Lager 4.9 Dunkel Lager

Goose Island Pils 5.00 German Pilsener

Celebrator Doppelbock 6.70 German Lager

Tommyknocker Butt Head 7.90 Doppelbock

Leinenkugel's® Honey Weiss 4.90 American Pale Wheat Ale American Ale

Fuller's ESB Ale 5.90 Extra Special / Strong Bitter (ESB) English Ale

Guinness® Draught 4.20 Irish Dry Stout Irish Ale Ale
Domaine DuPage™ 5.90 Saison (country style) French Ale

Blirgerbrau Wolnzacher Roggenbier 5.50 Roggenbier (rye beer) German Ale

Hacker-Pschorr Weisse 5.50 Hefe Weizen (wheat beer)

Leinenkugel's® Berry Weiss 4.7° Fruit Beer Specialty Specialty

aInformation obtained from http://beeradvocate.com/beer/style/. © Information obtained from Leinenkugel's official website (http://www.leinie.com).

mixtures present no inherent difficulty for the colorimetric sensor these studies were produced by transfer from an ink-well array to the
array: obviously, the composite response of the sensor arrayhydrophobic membrane using an array of dipped stainless steel pins.
does not give a component-by-component analysis, but for Printed arrays are available commercially (liquid-sensing array is a 25-
purposes of identification or quality control such an analysis is Sye a(r:rr?y, %S'-0$3? tlhe gacsr-]sensw_\g arlrfl_y is a Si-dye array, CS1.031)
unneeded. Moreover, owing to its high selectivity and low cost, 0™ ChemsSensing, Inc. (Champaign, IL; www.chemsensing.com).
the colorimetric sensor array may prove to be suitable for Data Acquisition. Data acquisition was carried out using ordinary

. . L . flatbed scanners following previously reported proceduss-82).
industrial applications in the analyses of foods and beverages; experiments were done in quadruplicate.

for example, 14 different commercial soft drinks have been ko 5 aqueous-phase experiments, an Epson Perfection 1250 flatbed
analyzed and easily differentiated by the dye ari@g).( scanner was used. The array was first saturated in an aqueous liquid
As an obviously important beverage, beer has been intensivelywithout dissolved organics (i.e., phosphate buffer) and imaged. After
examined by numerous scientists, and some have even publisheéxposure to an analyte solution, rapid color changes in the dyes were
on the subjectX9; 22—24). In the work presented here, two readily observed and digitally imaged. The colors of the analyte
colorimetric sensor array systems, optimized for sensing in liquid solutions have no significant effects pecause the liquid layer petween
and gas phases, respectively, were used to analyze 18 comthe sensor array and_flatbed scanner is extremely moﬂm).WIth
mercial beers. The main focus of this paper is to show the ability the use of a well-designed flow cell, the analyte solution required could

. . e be made less than 1Q0..
to identify one beer from another and to show classification of ~"r =, gas-phase experiments, an Epson Perfection 1670 flatbed

beer type based on the colorimetric response of the sensor araySscanner was used for imaging. The array was first imaged in air
This effort develops a simple method that may prove to be useful inmediately before the addition of the beer sample. Five hundred
for the quality control of beers, as well as a test of the general microliters of beer was then applied to a piece of filter paper secured

applicability of our sensor arrays. in a custom-made Teflon array holder with a sensor array inside; the
holder was then sealed. The color change of the dye array was imaged
MATERIALS AND METHODS after full equilibration with the headgas.

Data ProcessingSimply subtracting the before-exposure image from

Sample Preparation and Instruments. Eighteen beers were  the after-exposure image (red value minus red value, green minus green,
purchased from local stores and were used directly and freshly from blue minus blue) provides a color change profile for each analyte
their containers. Loss of GOs minimized by conducting parallel solution, as shown ifrigure 1. The center of each dye spot300
quadruplicate experiments immediately after opening of the containers. pixels, 10 pixel radius) is averaged to avoid edge artifacts using
NaHPO;-H20 and NaHPQ, were dissolved in purified water (obtained  Photoshop or customized software, ChemEye (ChemSensing, Inc.). The
using NANOpure Ultrapure Water System, Barnstead International, color change profiles are simplyN2dimensional vectors (whemd =
Dubuque, IA) to make 500 mL of a 0.3 M phosphate buffer solution number of dyes) that can be easily analyzed by using standard statistical
at pH 7.0 [the same buffer as used in prior aqueous sen3R)gds and chemometric techniques. In addition to the quadruplicate data, an
long as the same reference solution is used for all samples, its specificaverage response was also calculated for each analyte. The full set of
content (e.g., salt solution, pH) will not affect the results]. A digital data is available in the Supporting Information.
ThermoOrion 920A-plus pH-meter was used for pH measurements. It is convenient to visually display these vectors as color change
Three carbonated solutions of ethanol were prepared at 4, 5, and 6%maps by representing each spot as the absolute value of its color change
ethanol concentrations by dissolving pure ethanol (AAPER Alcohol in RGB. For purposes of display, the color ranges of the images are
and Chemical Co., Shelbyville, KY) in carbonated water (Vess Seltzer expanded; for liquid analysis-igure 2), RGB values of 16-41 (i.e.,
Water); as listed for each beer irable 1, these concentrations were 5 bits) were expanded to—®55 (i.e., 8 bits), and for gas analysis
chosen because commercial beers normally have similar alcohol (Figure 3), from 4—35 to 0—-255. This visual representation in no way
contents. For comparison, a fourth, noncarbonated, solution was affects the actual digital data used for chemometric analysis. The color
prepared with 5% ethanol in phosphate buffer. The carbonated ethanolchange profiles obtained from liquid-phase and head-gas analyses were
solutions were tested immediately after preparation. compiled into two libraries, both with 94 entries (5 for each of 18 beers

Sensor Array. The composition and preparation of the colorimetric  plus 4 ethanol control samples), consisting of 75-dimensional vectors
sensor arrays were described previoug9-<32). The arrays used in for liquid-phase analysis (25 red, green, and blue color changes of the
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Pilsner Mille® Lite Miller Willer® Point lcehouse™
Urquell® Genuine® Draft  High Life™  Special Lager

Leinenkugel® Leinenkugel® Gooselsland  Celebrator Tommyknocker Leinenkugel
Original Lager  Red Lager Pils Doppelbock BenyWeiss
Leinenkugel® Fuller's Guinness® Domaine  Hacker-Pschorr  Biirgerbriu
HoneyWeiss ESB Ale Draught DuPage™ Weisse Wolnzacher

Roggenbier

4% EtOH 5% EtOH 6% EtOH 5% EtOH
in sodawater in sodawater insodawater in pH7 buffer
Figure 2. Average color change profiles of 18 commercial beers and 4
control ethanol solutions for liquid-phase analysis done in quadruplicate.
The names are coded with different colors: red, American and Czech
lagers; gray, German lagers; green, ales; magenta, specialty; black,
controls. For the purposes of effective visualization, the color range shown
in these representations is expanded from RGB values of 10-41 (i.e., 5
bit) to 0-255 (i.e., 8 bit); the complete digital data are provided as
Supporting Information.

®
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Figure 3. Average color change profiles of 18 commercial beers and 4
control ethanol solutions for gas-phase analysis. The names are coded
with different colors: red, American and Czech lagers; gray, German
lagers; green, ales; magenta, specialty; black, control. For the purposes
of effective visualization, the color range shown in these representations
is expanded from RGB values of 4-35 (i.e., 5 hit) to 0-255 (i.e., 8 bit);
the complete digital data are provided as Supporting Information.
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libraries using Multi-Variance Statistical Package (MVSP, Kovach
Computing Services, Anglesey, Wales; www.kovcomp.co.uk) software.

RESULTS AND DISCUSSION

Molecular recognition of an analyte is, of course, a function
of the intermolecular interactions of that analyte. Our colori-
metric approach29—31, 34) to molecular recognition uses a
cross-responsive array of chemically diverse dyes; the choice
of the dyes in our colorimetric sensor array makes use of a wide
range of intermolecular interactions, rather than simply physical
adsorption [which is the dominant interaction in most prior
electronic nose technolog)( e.g., adsorption into polymers
(35 or onto metal oxide 36) surfaces]. The chemically
responsive dyes fall into three classes: (1) metal ion containing
dyes that change color in response to Lewis basicity (i.e.,
electron pair donation and metal ion ligation), (2) pH indi-
cators 87) that change color in response to Brgnsted acidity/
basicity (i.e., proton acidity and hydrogen bonding), and (3)
dyes with large permanent dipoles [e.g., zwitterionic solvato-
chromic dyes 38)] that change color in response to local
polarity. To some extent, of course, all dyes have some attributes
of each of these three classes. To analyze aqueous solutions or
head-gases with high humidity, it is important that the dyes
chosen must be hydrophobic and must be printed on a
hydrophobic membrane.

Beer can be generally classified as either lager or ale. The
classification depends on the type of yeast used in the brew
and the temperature at which fermentation takes place. Ales
use yeast that ferment at the “top” of the fermentation vessel,
which allows a higher temperature 25 °C) with a quicker
fermentation period~+8 days or less). Lagers are brewed with
bottom-fermenting yeast that ferment more slowly and at colder
temperatures (£218 °C), and they are often further matured
at cool temperatures. Ale yeasts produce more byproducts (e.g.,
esters) than lager yeasts; thus, ales are generally more complex
than lagers. Ales are also generally higher in alcohol content.
There are also specialty beers, which often employ techniques,
ingredients, and traditions from both lagers and ales but focus
more on vegetable or fruit flavorings. In addition to the general
division of lagers from ales, there are, of course, many more
subtle subclasses of beers based on ingredients, style of handling,
country of origin, etc. In these studies, 18 commercial beers
were examined with the colorimetric sensor arrays for both
liquid-phase and head-gas analyses: 11 lagers, 6 ales, and 1
specialty; detailed categorization of the beers used in this study
is shown inTable 1. Four ethanol solutions were also analyzed
as control samples for comparison.

Colorimetric Sensor Array ResponsesColor change pro-
files were obtained from liquid-phase experiments for the 18
commercial beers, as shown kigure 2. Distinct and highly
reproducible patterns were obtained for each beer. Four ethanol
solutions at different ethanol concentrations with and without
added CQ gas were examined as controls: 4, 5, and 6% v/v
ethanol solution in soda water and 5% v/v ethanol solution in
pH 7 phosphate buffer. Upon examinatinonFofure 2, it is
obvious that the strong array responses to the beensidmme
primarily from ethanol, water, or dissolved G(because the
ethanol control solutions gave much weaker responses than

25 dyes in the aqueous-phase sensor array) and a 108-dimensiona‘ﬁflImOSt all of the beer samples. Moreover, changing the ethanol

concentration from 4 to 5 to 6% v/v induces only a slight change

vector for gas-phase analysis (36 RGB color changes of the 36 dyes in’ :
the gas-phase sensor array), respectively. Both of the digital libraries N color change patterns, whereas far more dramatic color
are provided as Supporting Information. changes were observed among the beers due to the changes in

Chemometric Analyses.Principal component analysis (PCA) and ~ concentrations of other chemicals to which the arrays are more
hierarchical clustering analysis (HCAB3) were performed on the  sensitive. This is in part due to the hydrophobic nature of the
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array, W_hiCh makes th_e array nonresponsive to water and lessraple 2. Principal Component Analysis of the Colorimetric Sensor
responsive to other highly polar solutes (e.g., methanol and Array Databases
ethanol).

. P maximum
rsflirllavrv t? thgt“?nwg ]E:,her;si anda:lyses’na\l/er?ge)(co'r?r:q C:::tan]?? dimensionality PCs for 95% PCs for 99%
pronies were obtaine . 0 ead-gas a a_Ysse pe. ,e slo database of database? of discrimination of discrimination
the same 18 commercial beers, as showRigure 3. Distinct —
liquid phase 75 22 (0.29) 37 (0.49)°

and highly reproducible patterns were again obtained for eac_h head-gas 108 32 (0.30) 51(047)
analyte, although the color changes were weaker than those in gmpined 183 38 (0.21) 59 (0.32)
liquid-phase analysis. Compared with the four ethanol control

solutions, it is also obvious that the strong responses from the  ajaximum dimensionality of the database is the total number of measured
complex mixtures present in other beers ad primarily come variables (i.e., changes in red, green, and blue values of each dye in the array or
from ethanol, humidity, or C& because the ethanol control  combination of arrays). » Fraction of total.

solutions gave much weaker responses than almost all of the o ) .
beers. in Table 2, it is also interesting to compare the number of PCs

needed to include 95% of the total discrimination to the total
adimensionality of the databases. The fraction of all dimensions
needed for 95% discrimination is 0.29 for the liquid-phase
database, 0.30 for the head-gas database, but only 0.21 for the
combined database. One may conclude, therefore, that com-
bining the liquid-phase and head-gas databases does improve
the dimensionality of the data, but not to the extent it would if
the two databases were fully independent of each other (i.e., if

dimensions for the aqueous-phase sensor array and 108 for th(I)he PCs of the two databases were orthogonal to one another).

gas-phase sensor array). PCA essentially concentrates the data’s In most chemomgtrlc analyses, it is routine to plot th_e data
variation among analytes into the minimum number of dimen- in the two (or occasionally three) most important PCA dimen-

sions. Generally speaking, the larger the number of PCs sions, a sp-callec_i “.PCA score plqt”. The score plot is then used
necessary for a certain level of discrimination (e.g., 95% of the to show differentiation between different analytes. Such a score

total data variability), the better the sensor will be able to plot wil Work_, h‘?W_eVeT"f and only ifa very large percentage
discriminate among similar analytes. of the total discrimination can be concentrated to only two (or

. . . . - three) dimensions: a traditional PCA score goes not and
hAS SP:jovtvn Ir;(S:xppt(])rtlng {Ef(i";;t'dqn Flgqre 1for the I|q_U|c(Ij- N should not represent the data wéllthe sensors have good
phase data, shows tha IMENsions aré required 10,0 yica) discrimination (i.e., high dimensionality). In our case,

o > : .
capture 95% of all the discriminatory information and that 37 the two most important PCs contain ony34% of the total

dlm%nstlogsciresrequwr(ta'd folr f99% ?.'Scrl':m'nat'cl)n'3':20(;.the h?ad' discrimination. The extremely high dimensionality of all of these
gas data (Supporting Information Figure 1), IMENSIONS 15 tabases iwithout precedenin prior electronic nose technol-

are requir_ed to capture 95% Of allthe discrimi_natc_)ry_ infc_)rmation ogy: prior techniques nearly always are able to incorporate 95%
and 51 dlmens!ons are required for 99%.d|s.cr|m|nat|on. Thg of discrimination in two or three dimensions. For any sensor
numberof PCs is even larger than that for I|qU|d-pha39 analy3|s,array with high dimensionality, a two-dimensional (or even
in part because the gas-phase sensor array contains 36 dye ree-dimensional) PCA score plot is no longer appropriate for
rather than 25. In general, other electronic nose and electronlcComplete and accurate representation of the data. This makes
tongue techniques typically hagd—99% of discrimination in any visual representation of PCA of a high diménsionality
their first FWO dlmc_en5|_on_s o ) database extremely difficult.

The ability to discriminate between similar beers with the  ierarchical Clustering Analysis. A very standard statistical
colorimetric sensor arrays comes from the chemical diversity ,rocedure, HCA provides a better alternative for visual repre-
of the 25 or 36 sensor dyes (and the resulting diversity of sentation of high-dimensional data, in that an HCA dendrogram
chemical interactions with those dyes). The high dimensionality jncorporates the full dimensionality of the database. HCA groups
(i.e., high dispersion) of the colorimetric sensor array gives Us the analyte vectors according to their intervector spatial distances
an unusually high level of chemical discrimination, and hence , their full dimensional vector space (e.g., 75-dimensional for
cplorime_tric sensor arrays _have an exceptional ability to te aqueous-phase 25-dye sensor array and 108 for the gas-
differentiate among very similar analytes. phase 36-dye sensor array). There exist various related methods

The choice of dyes and the analytes being probed are not thefor defining clusters from the set of analyte vectors. The most
same in the head-gas data compared to the liquid-phase datacommon of these is the minimum variance method (Ward'’s
This makes it potentially advantageous to combine the two method) 27), which we use here. The sum of the squared
digital databases. The liquid-phase and head-gas analyses datguclidean distances (SEDs) from the group centroid to each of
were therefore combined to form a library of 183-dimensional the vectors in that group is used to evaluate the variance within
(i.e., 75+ 108) vectors, and statistical analyses were performed the group, and the groups with the minimum variance are
on the combined digital database. The quadruplicate data forclustered preferentially. Those clusters are then grouped together
liquid and gas phases for each analyte were joined randomly,to form new larger scale clusters. The operation is performed
and the averages of each analyte in the liquid and gas phasesepeatedly until only one supercluster remains. A dendrogram
were merged. is generated in this fashion that shows quantitatively the

PCA of the combined data (Supporting Information Figure similarities among the various analytes. An HCA dendrogram
1) shows that 38 dimensions are required to capture 95% of all shows quantitatively the degree of similarity of the array
the discriminatory information and 59 dimensions are required responses among the various analytes using the data’s full
for 99% discrimination, which is a higher dimensionality than dimensionality. It also shows any misidentifications or overlap
for either liquid-phase or head-gas analyses alone. As shownbetween individual measurements of analytes. In addition, once

Principal Component Analysis. PCA is a mathematical
transformation used to extract variance between entries in a dat
matrix by reducing the redundancy in the dimensionality of the
data. It takes the data points (changes in RGB values for each
of the dyes in the array) for all analytes and generates a set of
orthogonal eigenvectors (principal components, PCs) for maxi-
mum variance. The maximum total number of PCs is equal to
3N — 1, whereN is the number of dyes in the array (i.e., 75
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in Supporting Information Figure 2 for a comparison of all three
databases. As shown in the HCA dendrogrdrigre 4),
excellent classification is seen for the combined data: of 94
cases, there are only 3 misclassifications (2.7% error rate).
Furthermore, the classes of beers are generally distinct and
coincide well with the commonly accepted classification of beers
that are shown iable 1: for example, (1) there is an excellent
division between pale lagers and ales; (2) all six American macro
lagers cluster closely, but are fully distinct from each other;
and (3) specialty beers and ethanol controls are very well
separated from the rest. These results suggest that the HCA
analysis (i.e., dendrogram) may be used to estimate the
classification of unknown beers.

In comparing the HCA analyses of the combined, the liquid-
phase, and the head-gas databafegu(e 4 and Supporting
Information Figures 2 and 3), we observe that the combined
database provides the best classification and the lowest error
rate (3 of 110 cases; 2.7% error rate). Liquid-phase analysis
does a somewhat better job of classification (e.g., 9 of 110;
8.2% error rate) than the head-gas (14 of 110; 13% error rate),
but neither the liquid nor the gas analyses alone are as good as
the combined database.

Supporting Information Figure 2 shows a comparison of the
dendrogram groupings found for all three databases. Again, the
dendrogram classifications are most discrete for the combined
database and the head-gas analysis, the least accurate. This is
certainly consistent with the general impression that taste rather
than aroma is the dominant characteristic of beers. It is also
worth noting that the clusters formed from the liquid-phase
database are not exactly the same as those from the head-gas
analysis, which shows that there are differences between the
weightings of the chemical classes to which the liquid-sensing
arrays are responding versus the weightings of the gas-sensing
arrays.

One of the major remaining sources of errors with the
colorimetric sensor arrays is in the reproducibility of the printing
of the arrays, which (in these studies) were produced by transfer
from an ink-well array to the hydrophobic membrane using an
array of dipped stainless steel pin®3¢-26). The level of
reproducibility in array printing in general, however, is improv-
ing rapidly using noncontact printing (e.g., cf. Perkin-Elmer
PiezoArray).

Validation. Testing the reproducibility and reliability of a
multidimensional sensor array is much more complicated than
for single sensors. Although statistical methods, notably HCA,
provide an optimized model of the entire database, it would be
reassuring to have a simpler model to test the consistency of
the data. The most intuitive and straightforward method is
simply to query each trial against the whole data library and to
find the closest match, as defined by a Euclidean distance.

To that end, we can define a simple goodness of fit (GOF)
to evaluate the similarity between any two vectors, by calculat-
ing the Euclidean distance between the two vectors. As seen in
eq 1, the GOF is a normalized Euclidean distance, whase

i=3N

(Xa — Xp)2/(3N x 510f

GOF=1-— 1)

a database is established, any new unknown sample can be easithe measuremenb is any library entryx; is the AR, AG, or
classified using the HCA dendrogram to identify the unknown AB value of theith dye,N is the number of dyes, and\ds the
or at least identify its closest database relation.
The HCA dendrogram for 94 color change patterns (quadru- for a 36-dye array). The normalization factorN(3< 510¥,
plicate trials plus averages of 18 beers plus four ethanol comes from the maximum difference possible between any two
solutions) is shown ifrigure 4 for the combined database and RGB values in the before-exposure versus after-exposure

total dimensionality of the vector space (e.g., 108 dimensions
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Omin 15 mins 60 mins 240 mins

Figure 5. Average color change profiles of Miller Lite before and after pure 15°/9 30"/9 50°/9
bubbling with argon gas for 15, 60, and 240 min at ~200 mL/min. For watering watering watering
the purposes of effective visualization, the color range shown in these
representations is expanded from RGB values of 10-41 (i.e., 5 bit) to B —— 50%.b
0-255 (i.e., 8 bit). 50%.c
50%.ave
. . . 50%.a
images: thatis, 255 (—255). Therefore, the GOF value is a 30%.b
number between 0 and 1; a GOF of 1 indicates an exact match. —|_7L—E3°:b-°
By calculating a GOF for every quadruplicate trial and gg;&:“e
average trial (90 entries for the beers only; the controls were 15%.b
not included because they were single entries only; results Eﬁ%-c
. : - . 15%.ave
presented as Table 2 in the Supporting Information) against 15% a

for each entry (other than itself) is one of the other entries for Pren®
that analyte, with five mismatches (i.e., 5.5% error rate). This gure:a
compares well with the HCA dendrogram misclassification rate 15 12 9 6 3 0
of 2.7%: HCA optimizes classifications for the whole database, Squared Euclidean Distance / 103
and so, as expected, its error rate is somewhat less than th%igure 6. Average color change profiles (A) and a HCA (B)

more limited pairwise GOF comparison.

every entry in the digital data library, we find that the best match —E pure.c

of the effects

P ial Applicati i I/ lity A of watering of Guinness Draught with various amounts of purified water
otential Applications to Quality Control/Quality Assur- added (triplicate runs plus average at dilutions of 15, 30, and 50% V/v).

ance.Due to the extremely high discriminatory ability of the For the purpose of effective visualization, the color range shown in (A) is

colorimetric SENSOor array, one may spe_culate the array m_ightexpanded from RGB values of 10-41 (i.e., 5 hits) to 0-255 (i.e., 8 hits)
prove to be useful in applications of quality control and quality

assurance for the food and beverage industry. We have

conducted two simple experiments along these lines as a proofreasonable accuracy. We speculate that the colorimetric sensor
of concept: we have examined the effects of degassing (i.e.,array will also be able to distinguish readily between a beer in
flatness due to loss of carbonation) and of dilution (i.e., its pristine state and one that has undergone spoilage, has been
watering) on the colorimetric sensor array response. For the firstfoxed by overheating or photo-oxidation, has been watered or
experiment, the array response (done in triplicate) was deter-contaminated, or has loss carbonation. Our preliminary explora-
mined for a single beer after intentional degassing of beer with tion of the last two examples suggests application of the
an argon gas flow. As shown iRigure 5, the color change  colorimetric sensor array to quality control and quality assurance
profiles of the array do respond to such degassing, and thein the food and beverage industry. In addition, the extremely
changes in the array response are clearly distinguishable evemigh dimensionality of the data from our colorimetric arrays
by eye. For the second experiment, the effect of watering of a suggests that statistical correlations with the evaluations by

beer on its array response was determined. As shoWigire  organoleptic panels (i.e., drinkers) may be accomplished and
6, the color change profiles do change with increased dilution, may prove to have quantitative predictive value. It is important
and the changes are again clearly distinguishable byrégere to realize, however, that the colorimetric sensor array is based

6 also shows the dendrogram from the triplicate trials plus the on the differences in the concentrations of various organic and

average: the data are quantitative, and no confusion wasinorganic components (including pH) of the analytes, and the

observed among the 16 entries. These two simple examples givearray responses cannot be translated (at this time, at least) into
us some hope that our approach using colorimetric sensor arraysin actual human perception of taste and smell.

may prove to be useful for quality assurance/quality control

applications of beers and perhaps other beverages. Supporting Information Available: Scree plots of the PCAs,

In summary, a new and very simple analytic method using HCA of liquid-phase, head-gas, and combined databases,
colorimetric sensor arrays has been successfully applied in thepairwise goodness-of-fit comparisons, and the full digital
comparison and identification of 18 commercial beers in both database for liquid-phase, head-gas, and combined analyses. This
liguid and gas phases. The color changes of the sensor array§na'[6fia| is available free of charge via the Internet at http://
produce distinct identifiable patterns for each beer using an pubs.acs.org.
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